Date: 2014-01-08 11:50 pm (UTC)
Безаргументный конструктор короче, поэтому в большинстве случаев удобнее (так в стандартной библиотеке и сделано). Единственное исключение - хитрые случаи, полезно/хочется видеть аппликативную структуру refl. Сравни, например
uip : {A : Set} (x y : A) (p q : x ≡ y) →  p ≡ q
uip x .x (refl .x) (refl .x)  = refl (refl x)
и
uip' : {A : Set} (x y : A) (p q : x ≐ y) →  p ≐ q
uip' x .x refl' refl'  = refl'
Хотя в первом случае в правой части можно вместо точного выражения, которое нам дает Агси (C-c C-a), написать
uip : {A : Set} (x y : A) (p q : x ≡ y) →  p ≡ q
uip x .x (refl .x) (refl .x)  = refl _
(Это справа вообще всегда можно делать с refl, потому что понятно, что туда пропишется NF из типа.)
This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

deniok: (Default)
deniok

February 2022

S M T W T F S
  12345
6789101112
13141516171819
20212223 242526
2728     

Most Popular Tags

Style Credit

Expand Cut Tags

No cut tags
Page generated Jul. 12th, 2025 05:36 am
Powered by Dreamwidth Studios